Malakoff Humanis et l’IA générative : un cas d’usage pour anticiper les réclamations clients

Date:

Malakoff Humanis, explore l’utilisation de l’IA générative pour améliorer la relation client, sous la direction de Stéphane Barde, Chief Data & Digital Officer. L’objectif principal est de prévenir les réclamations grâce à l’analyse des appels téléphoniques des clients. Ce projet vise à optimiser la gestion des réclamations tout en maîtrisant les coûts des nouvelles technologies employées.

Détection des signaux de mécontentement à partir des appels téléphoniques

Malakoff Humanis gère chaque jour des milliers de conversations téléphoniques, souvent des moments critiques pour évaluer la satisfaction des clients. Jusqu’à récemment, il était difficile d’exploiter ces appels pour anticiper d’éventuelles réclamations. L’objectif est désormais d’identifier les signaux faibles indiquant qu’une situation pourrait mener à une plainte.

L’IA transcrit les appels en texte, puis analyse ces données pour évaluer le niveau de satisfaction des clients. Le taux de succès limité des modèles de prédiction réduisait l’efficacité de l’entreprise dans sa capacité à anticiper et répondre de manière proactive aux besoins des clients.

Amélioration grâce à l’IA générative

Avec l’intégration de l’IA générative, la précision de la prédiction a considérablement augmenté, atteignant des niveaux nettement supérieurs. L’analyse des appels permet désormais non seulement d’identifier les clients potentiellement insatisfaits, mais aussi de comprendre la nature de leurs préoccupations plus rapidement et avec plus de précision.

Les résultats de ces analyses sont exploités par les équipes de gestion afin d’anticiper et de prévenir les réclamations potentielles. Cette capacité d’anticipation permet d’améliorer la qualité de service tout en renforçant la relation client. Cependant, le déploiement de cette technologie nécessite de bien gérer le rapport coût-performance pour garantir une utilisation rentable et durable.

Optimisation des coûts et compromis sur la performance

Malakoff Humanis a exploré plusieurs architectures afin de trouver un équilibre optimal entre coût et efficacité. Plusieurs options ont été testées, notamment l’architecture « zero-shot », « few-shot » et RAG (Génération Augmentée de Récupération). Bien que l’approche RAG ait démontré une excellente performance, son coût élevé posait des questions sur sa rentabilité à long terme.

Pour parvenir à un compromis, une solution intermédiaire a été adoptée : une architecture « few-shot » utilisant des modèles open source. Cette solution permet d’atteindre une performance suffisante, d’environ 80 %, tout en étant beaucoup plus économique. Le défi est de trouver une approche performante qui reste économiquement viable et assure une optimisation globale des coûts tout en maintenant un bon niveau de satisfaction client.

Conclusion

En résumé, le cas d’usage de l’IA générative pour anticiper les réclamations représente une étape significative dans la transformation de la gestion de la relation client. Grâce à cette technologie, les interactions avec les clients deviennent plus personnalisées, proactives et mieux ciblées, renforçant ainsi la confiance et la satisfaction globale. L’IA générative s’affirme ainsi comme un outil clé pour anticiper les attentes des clients et améliorer leur expérience, tout en optimisant les ressources internes et les coûts.

Chloé (EFIMOVE)
Chloé (EFIMOVE)
Efimove.ai est une entreprise spécialisée en intelligence artificielle à destination des entreprises afin de transformer leurs processus métiers. Efimove est également l'une des entreprises précurseuses des solutions RAG IA avec de belles références à son actif.

Suivez-nous :

Newsletter

spot_imgspot_img

Populaires

A lire également
Intelligence Artificielle

L’IA au service des agents immobiliers d’ERA

L'#IA au service des agents d'ERA optimise les #ventes immobilières et soutient l'efficacité opérationnelle.

DeepSeek R1-Lite-Preview : une nouvelle IA de raisonnement

Le modèle #DeepSeek R1-Lite-Preview marque une avancée significative en #IA, en repoussant les limites du secteur #IT avec ses capacités de raisonnement.

L’IA, un atout pour les conseillers financiers

L'#IA transforme le secteur #financier en permettant une personnalisation accrue des services clients par les conseillers.

L’IA dans la construction : enjeux et perspectives

L'étude révèle que l'#IA joue un rôle clé pour rendre les processus #opérationnels plus efficaces dans le secteur de la construction.