Le RAG Agentique : Une nouvelle approche pour les LLM

Date:

Les grands modèles linguistiques (LLM) ont révolutionné les pratiques des entreprises, qui ont rapidement intégré ces outils dans leurs processus. Parmi ces applications, la génération augmentée de récupération (RAG) a permis d’exploiter les données internes pour garantir des réponses précises et contextuelles, réduisant ainsi les erreurs. En combinant accès aux données internes et capacités des LLM, le RAG a contribué au succès des chatbots et des systèmes de recherche.

Les limites du RAG basique

Bien que les avantages soient nombreux, le RAG seul présente des limites. Il repose sur deux composantes : un récupérateur et un générateur. Le récupérateur utilise une base de données vectorielle pour trouver les documents pertinents, et le générateur produit une réponse en utilisant ces données. Cette structure, limitée à une seule source de connaissances, ne répond pas toujours aux besoins complexes nécessitant des informations diversifiées et un raisonnement supplémentaire. Cela peut entraîner des réponses incomplètes ou imprécises, notamment lorsque les requêtes impliquent des informations provenant de plusieurs contextes. Pour des situations plus avancées, une approche capable de coordonner des ressources variées est nécessaire.

Pour compenser cela, il existe par exemple des solutions comme ARKYCE qui exploite des techniques plus sophistiquées et pointues de type RAG MESH.

En complément du RAG MESH, le RAG Agentique : une approche innovante

Pour gagner en performances, le RAG agentique apporte une méthode complémentaire innovante. Contrairement au RAG classique, il intègre des agents d’IA capables de planifier des étapes et d’utiliser des outils externes pour exécuter des tâches complexes. Ces agents peuvent accéder à plusieurs sources, telles que des API externes, des bases de données multiples, ou des outils comme une calculatrice, pour fournir des réponses plus précises et validées.

Les agents d’IA, dotés de capacités de raisonnement et de mémoire, décident des sources à utiliser et vérifient la pertinence des données avant de les transmettre au générateur. Cela permet de combiner des informations de plusieurs sources et de garantir une réponse complète et fiable.

Mise en place et défis

Le RAG agentique reste nouveau et présente des défis, notamment des latences dues aux étapes multiples et des problèmes de fiabilité liés aux modèles sous-jacents. Le coût des requêtes et du traitement des données peut également être élevé, mais une architecture optimisée peut réduire ces coûts à long terme.

Une évolution prometteuse

Le RAG agentique représente une étape clé pour les applications d’IA notamment si elles exploitent la technologie RAG MESH comme la solution ARKYCE éditée par Efimove souhaitant aller au-delà de la simple récupération d’informations.

Il permet de fournir des réponses plus précises et de réaliser des tâches, apportant une valeur ajoutée aux applications basées sur des modèles linguistiques. Alors que les entreprises continuent d’innover, le RAG agentique pourrait transformer leur manière d’exploiter l’IA.

Chloé (EFIMOVE)
Chloé (EFIMOVE)
Efimove.ai est une entreprise spécialisée en intelligence artificielle à destination des entreprises afin de transformer leurs processus métiers. Efimove est également l'une des entreprises précurseuses des solutions RAG IA avec de belles références à son actif.

Suivez-nous :

Newsletter

Formation en intelligence artificielleFormation en intelligence artificielle

Populaires

A lire également
Intelligence Artificielle

Réseaux de neurones IA : Comment ils transforment l’industrie de l’assurance ?

L'IA transforme l'assurance via tarification précise et détection des fraudes.

ImageRAG en IA : révolutionner le contrôle qualité grâce à l’analyse visuelle intelligente

#ImageRAG #IA : l'intelligence visuelle qui redéfinit l'excellence industrielle et le contrôle qualité.

Agents autonomes, innovation et réglementation : la grande Révolution

En ce début 2025, les #agentIA autonomes font une entrée fracassante dans le quotidien des #PME et #ETI françaises.

IA Act 2026 : ce que les PME et ETI françaises doivent mettre en place dès maintenant

L’Union européenne franchit un cap décisif avec l’adoption de...